16 resultados para Weed

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of mutualisms in contributing to species invasions is rarely considered, inhibiting effective risk analysis and management options. Potential ecological consequences of invasion of non-native pollinators include increased pollination and seed set of invasive plants, with subsequent impacts on population growth rates and rates of spread. We outline a quantitative approach for evaluating the impact of a proposed introduction of an invasive pollinator on existing weed population dynamics and demonstrate the use of this approach on a relatively data-rich case study: the impacts on Cytisus scoparius (Scotch broom) from proposed introduction of Bombus terrestris. Three models have been used to assess population growth (matrix model), spread speed (integrodifference equation), and equilibrium occupancy (lattice model) for C. scoparius. We use available demographic data for an Australian population to parameterize two of these models. Increased seed set due to more efficient pollination resulted in a higher population growth rate in the density-independent matrix model, whereas simulations of enhanced pollination scenarios had a negligible effect on equilibrium weed occupancy in the lattice model. This is attributed to strong microsite limitation of recruitment in invasive C. scoparius populations observed in Australia and incorporated in the lattice model. A lack of information regarding secondary ant dispersal of C. scoparius prevents us from parameterizing the integrodifference equation model for Australia, but studies of invasive populations in California suggest that spread speed will also increase with higher seed set. For microsite-limited C. scoparius populations, increased seed set has minimal effects on equilibrium site occupancy. However, for density-independent rapidly invading populations, increased seed set is likely to lead to higher growth rates and spread speeds. The impacts of introduced pollinators on native flora and fauna and the potential for promoting range expansion in pollinator-limited 'sleeper weeds' also remain substantial risks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various factors can influence the population dynamics of phytophages post introduction, of which climate is fundamental. Here we present an approach, using a mechanistic modelling package (CLIMEX), that at least enables one to make predictions of likely dynamics based on climate alone. As biological control programs will have minimal funding for basic work (particularly on population dynamics), we show how predictions can be made using a species geographical distribution, relative abundance across its range, seasonal phenology and laboratory rearing data. Many of these data sets are more likely to be available than long-term population data, and some can be incorporated into the exploratory phase of a biocontrol program. Although models are likely to be more robust the more information is available, useful models can be developed using information on species distribution alone. The fitted model estimates a species average response to climate, and can be used to predict likely geographical distribution if introduced, where the agent is likely to be more abundant (i.e. good locations) and more importantly for interpretation of release success, the likely variation in abundance over time due to intra- and inter-year climate variability. The latter will be useful in predicting both the seasonal and long-term impacts of the potential biocontrol agent on the target weed. We believe this tool may not only aid in the agent selection process, but also in the design of release strategies, and for interpretation of post-introduction dynamics and impacts. More importantly we are making testable predictions. If biological control is to become more of a science making and testing such hypothesis will be a key component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parthenium weed (Parthenium hysterophorus L.) is a new and potentially major weed in Pakistan. This weed, originating from central America, is now a major weed in many regions of the world including Eastern Africa, India, parts of South East Asia and Australia. Presumably its recent arrival in Pakistan has been due to its movement from India, but this has yet to be established. In Australia it has been present for about 50 years, in which time it has spread from isolated infestations to establish core populations in central Queensland with scattered and isolated plants occurring south into New South Wales and north-west into the Northern Territory. Its spread in Pakistan is likely to be much more rapid, but lessons learnt in Australia will be of great value for weed managers in Pakistan. This annual herb has the potential to spread to all medium rainfall rangeland, dairy and summer cropping areas in Pakistan. In Australia its main effect is upon livestock production, but it is also causing health concerns in regional communities. However, in India it has also had a significant impact in cropping systems. To help coordinate actions on its management in Australia, a National Weeds Program has created a Parthenium Weed Management Group (PWMG) and under this group a Parthenium Weed Research Group (PWRG) has been formed. Funding coming from this national program and other sources has supported the PWRG to undertake a collaborative and technology exchange research program in two main areas: 1) biology and ecology and 2) management; while the PWMG has focused on community awareness and the production of various extension and management packages. Research in the area of biology and ecology has included studies on the evaluation of competitive plants to displace parthenium weed, the use of process-based simulation models to monitor and predict future spread and abundance under present and future climate conditions, the effect of the weed on human health and the ecology of its seed bank. Management research has focussed on the development of biological control approaches using plant-feeding insects and pathogens. The effectiveness of biological control is also being monitored through long term studies on seed bank size and dynamics. The use of fire as another potential management tool is also being evaluated. In addition to this important research, an effort has also been made to spread the most important findings and management outcomes to the wider community through an extension and education program driven by the PWMG. These developments within Australia, in parthenium weed management, will be of great help to P